Product Description
Chinese Brand New Construction Machinery
SUNYO WZ30-25 model backhoe loader with famous engine and transmission.
widely used and flexible operation.
The Backhoe Loader WZ30-25:
WZ30-25 Backhoe loader, with CZPT YC4A105Z-T20 engine , power is100hp, chinese axle and Trans. With A/C, pilot control, Reversing video, hammer pipe , WZ30-25 Backhoe loader Operating weight7600kg, front bucket 1.2 m3, rated loading is 2.5tons. Rear CZPT bucket is 0.3 m3,
It can use for loading and digging, 1 machine has 2 functions. can help you to save much more cost. and can do many kinds work for building road, and so on.
It will bring you higher economic efficiency, Better profit income.
Main Performance Parameter of WZ30-25:
Overall Operating Weight | 7640KG |
Transport Dimension | |
mm L*W*H | 6170×2268×3760 |
Wheel base | 2370mm |
Min. Ground Clearance | 300mm |
Bucket Capacity | 1.0m3 |
Breakout Force | 38KN |
Loading Lifting Capacity | 2500KG |
Bucket Dumping Height | 2770mm |
Bucket Dumping Distance | 925mm |
Digging Depth | 27mm |
Backhoe Capacity | 0.3m3 |
Max. CZPT Depth | 4082mm |
Swing Angle of Excavator Grab | 190o |
Max. Pulling Force | 39KN |
Engine | |
Model | YUCHAI YC4A105Z-T20 |
Type | In Line Direct injection Four-Stroke and Injection Combustion Chamber |
Cylinder-Inside Diameter*Stroke | 4-108×132 |
Rated Power | 75KW |
Rated Speed | 2200r/min |
Min. Fuel Consumption | ≤230g/km.h |
Max.Torque | ≥400N.M/1500r/min |
Displacement | 4.8L |
Steering System | |
Model of Steering Device | BZZ5-250 |
Steering Angle | ±36 o |
Min. turning radius | 5018mm |
Pressure of the system | 14Mpa |
Axle | |
Manufacturer | HangZhou Axle Factory |
Main Transmission Type | Double Reduction |
Final Reducer | Single Stage Final Reducer |
Rated Loader of Axle | 8.5t |
Transmission System | |
Torque Converter | |
Model | YJ280 |
Type | Single-stage Three Elements |
Max. Efficiency | 84.40% |
Inlet Pressure | 1.3Mpa-1.5 Mpa |
Outlet Pressure | 0.25Mpa-0.3 Mpa |
Cooling Method | Oil-cooling Pressure Circulation |
Gearbox | |
Type | Fixed Shaft Power Transmission |
Oil Pressure of Clutch | 1373Kpa-1569 Kpa |
Gears | Two Gears Ahead, Two Gears Astern |
Max.Speed | 22Km/h |
Tyre | |
Model | 16/70-20 |
Pressure of Front wheel | 0.22 Mpa |
Pressure of Back Wheel | 0.22 Mpa |
Brake System | |
Service Brake | Air Over Oil Caliper Brake |
External Type | |
Self-regulation | |
Self-balance | |
Emergency Brake | Operation Power Implementing brake Manual Operation Power Terminating Brake |
Hydraulic System | |
Digging Power of Excavator Grab | 46.5KN |
Digging Power of Dipper | 31KN |
Bucket Lifting Time | 5.4S |
Bucket Lowering Time | 3.1S |
Bucket Discharge Time | 2.0S |
Backhoe Loader:
the backhoe loader also called a loader backhoe,is a heavy equipment vehicle that consists of a tractor fitted with a bucket on the front and a backhoe on the back. Due to its small size and versatility, backhoe loaders are very common in urban engineering and small construction projects (such as building a small house, fixing urban roads, etc.) as well as developing countries. This type of machine is similar to and derived from what is now known as a TLB (Tractor-Loader-Backhoe), which is to say, an agricultural tractor fitted with a front loader and rear backhoe attachment.
Packing & Shipping:
We have been engaged in foreign trade for more than 18 years and have very rich experience in shipping. According to the past situation, each of our products is complete and delivered to customers as planned.
Generally, For the WZ30-25 Backhoe loader , one set need 1 40H conainer, or 2 sets load into 1 40H container and 1 20 container. it also can load in the bulk ship, or Ro-on/Ro-off ship. it according your requirements
Attachments:
Our backhoe loader can be with some more attachements excapt the standard bucket. for exmple the 4 in 1 bucket, Quick Change, Fork, Auger, Hamer, Grass Grab, Wooden Fork, Snow blade, sweaper, Rops And so on.
Our Service :
Pre-sale service:
To our customers, before you buy the equipments, we hope to understand your needs, according to your machine requirements and your budget; choose the right model for you, to ensure that you buy high-quality products at a lower price.
At the same time, you are welcome to visit our factory in HangZhou, China; we will book hotels, air tickets and take you up from air port.
After-sale service:
After the sale, we will properly arrange the transportation of the machine to ensure that the goods are safely delivered to your hands.
At the same time, we will provide you with technical support 24 hours a day, or send engineers to CZPT the installation and operation. If there are any quality problems with the machine, we will solve it for you in the first time.
Factory View:
Here show some factory pictures to help you understand our company.
Exhibition:
Here show you some exhibition pictures .
Certificate :
FAQ:
Q1: Which country do you export to?
Asia: Pakistan, Philippines, Thailand, Myanmar, Vietnam, Bangladesh, Kazakhstan, Turkmenistan, etc.
Middle East: Iran, UAE, Jordan, Oman, Saudi Arabia, Syria, etc.
Europe: Poland, Russia, Ukraine, Belarus, Bulgaria, etc.
Africa: South Africa,Kenya,Congo,Ethiopia,Nigeria,Ghana,Algeria,Senegal,Tunisia,etc.
South America: Paraguay, Colombia, Brazil, Peru, Chile, Cuba, Venezuela, etc.
Oceania: Australia, etc.
Q2: What is the proportion of your products export?
90% of our products are exported to all over the world.
Q3: What is the payment term?
We can discuss with you. Consider for long-term customers we are favorable payment terms TT, L/C, west union. It depends on the cooperation time, country and contract value.
Q4: What kind of logistic service do you supply?
FOB, CIF, C&F
Q5: What spare parts can you supply?
All kinds of spare parts of SUNYO JCM, SDLG, SHACMAN, SHXIHU (WEST LAKE) DIS.I, YTO, etc.
Applications of Spline Couplings
A spline coupling is a highly effective means of connecting 2 or more components. These types of couplings are very efficient, as they combine linear motion with rotation, and their efficiency makes them a desirable choice in numerous applications. Read on to learn more about the main characteristics and applications of spline couplings. You will also be able to determine the predicted operation and wear. You can easily design your own couplings by following the steps outlined below.
Optimal design
The spline coupling plays an important role in transmitting torque. It consists of a hub and a shaft with splines that are in surface contact without relative motion. Because they are connected, their angular velocity is the same. The splines can be designed with any profile that minimizes friction. Because they are in contact with each other, the load is not evenly distributed, concentrating on a small area, which can deform the hub surface.
Optimal spline coupling design takes into account several factors, including weight, material characteristics, and performance requirements. In the aeronautics industry, weight is an important design factor. S.A.E. and ANSI tables do not account for weight when calculating the performance requirements of spline couplings. Another critical factor is space. Spline couplings may need to fit in tight spaces, or they may be subject to other configuration constraints.
Optimal design of spline couplers may be characterized by an odd number of teeth. However, this is not always the case. If the external spline’s outer diameter exceeds a certain threshold, the optimal spline coupling model may not be an optimal choice for this application. To optimize a spline coupling for a specific application, the user may need to consider the sizing method that is most appropriate for their application.
Once a design is generated, the next step is to test the resulting spline coupling. The system must check for any design constraints and validate that it can be produced using modern manufacturing techniques. The resulting spline coupling model is then exported to an optimisation tool for further analysis. The method enables a designer to easily manipulate the design of a spline coupling and reduce its weight.
The spline coupling model 20 includes the major structural features of a spline coupling. A product model software program 10 stores default values for each of the spline coupling’s specifications. The resulting spline model is then calculated in accordance with the algorithm used in the present invention. The software allows the designer to enter the spline coupling’s radii, thickness, and orientation.
Characteristics
An important aspect of aero-engine splines is the load distribution among the teeth. The researchers have performed experimental tests and have analyzed the effect of lubrication conditions on the coupling behavior. Then, they devised a theoretical model using a Ruiz parameter to simulate the actual working conditions of spline couplings. This model explains the wear damage caused by the spline couplings by considering the influence of friction, misalignment, and other conditions that are relevant to the splines’ performance.
In order to design a spline coupling, the user first inputs the design criteria for sizing load carrying sections, including the external spline 40 of the spline coupling model 30. Then, the user specifies torque margin performance requirement specifications, such as the yield limit, plastic buckling, and creep buckling. The software program then automatically calculates the size and configuration of the load carrying sections and the shaft. These specifications are then entered into the model software program 10 as specification values.
Various spline coupling configuration specifications are input on the GUI screen 80. The software program 10 then generates a spline coupling model by storing default values for the various specifications. The user then can manipulate the spline coupling model by modifying its various specifications. The final result will be a computer-aided design that enables designers to optimize spline couplings based on their performance and design specifications.
The spline coupling model software program continually evaluates the validity of spline coupling models for a particular application. For example, if a user enters a data value signal corresponding to a parameter signal, the software compares the value of the signal entered to the corresponding value in the knowledge base. If the values are outside the specifications, a warning message is displayed. Once this comparison is completed, the spline coupling model software program outputs a report with the results.
Various spline coupling design factors include weight, material properties, and performance requirements. Weight is 1 of the most important design factors, particularly in the aeronautics field. ANSI and S.A.E. tables do not consider these factors when calculating the load characteristics of spline couplings. Other design requirements may also restrict the configuration of a spline coupling.
Applications
Spline couplings are a type of mechanical joint that connects 2 rotating shafts. Its 2 parts engage teeth that transfer load. Although splines are commonly over-dimensioned, they are still prone to fatigue and static behavior. These properties also make them prone to wear and tear. Therefore, proper design and selection are vital to minimize wear and tear on splines. There are many applications of spline couplings.
A key design is based on the size of the shaft being joined. This allows for the proper spacing of the keys. A novel method of hobbing allows for the formation of tapered bases without interference, and the root of the keys is concentric with the axis. These features enable for high production rates. Various applications of spline couplings can be found in various industries. To learn more, read on.
FE based methodology can predict the wear rate of spline couplings by including the evolution of the coefficient of friction. This method can predict fretting wear from simple round-on-flat geometry, and has been calibrated with experimental data. The predicted wear rate is reasonable compared to the experimental data. Friction evolution in spline couplings depends on the spline geometry. It is also crucial to consider the lubrication condition of the splines.
Using a spline coupling reduces backlash and ensures proper alignment of mated components. The shaft’s splined tooth form transfers rotation from the splined shaft to the internal splined member, which may be a gear or other rotary device. A spline coupling’s root strength and torque requirements determine the type of spline coupling that should be used.
The spline root is usually flat and has a crown on 1 side. The crowned spline has a symmetrical crown at the centerline of the face-width of the spline. As the spline length decreases toward the ends, the teeth are becoming thinner. The tooth diameter is measured in pitch. This means that the male spline has a flat root and a crowned spline.
Predictability
Spindle couplings are used in rotating machinery to connect 2 shafts. They are composed of 2 parts with teeth that engage each other and transfer load. Spline couplings are commonly over-dimensioned and are prone to static and fatigue behavior. Wear phenomena are also a common problem with splines. To address these issues, it is essential to understand the behavior and predictability of these couplings.
Dynamic behavior of spline-rotor couplings is often unclear, particularly if the system is not integrated with the rotor. For example, when a misalignment is not present, the main response frequency is 1 X-rotating speed. As the misalignment increases, the system starts to vibrate in complex ways. Furthermore, as the shaft orbits depart from the origin, the magnitudes of all the frequencies increase. Thus, research results are useful in determining proper design and troubleshooting of rotor systems.
The model of misaligned spline couplings can be obtained by analyzing the stress-compression relationships between 2 spline pairs. The meshing force model of splines is a function of the system mass, transmitting torque, and dynamic vibration displacement. This model holds when the dynamic vibration displacement is small. Besides, the CZPT stepping integration method is stable and has high efficiency.
The slip distributions are a function of the state of lubrication, coefficient of friction, and loading cycles. The predicted wear depths are well within the range of measured values. These predictions are based on the slip distributions. The methodology predicts increased wear under lightly lubricated conditions, but not under added lubrication. The lubrication condition and coefficient of friction are the key factors determining the wear behavior of splines.