Product Description
Chinese Brand Agricultural Machinery 2.5 Ton Wheel Loader
Product Application
ITEM | SPECIFICATION | ITEM | SPECIFICATION |
Overall working weight | 6500kg | Front and rear axles | |
Rated bucket capacity | 1.3m³ | Main transmission type | Spiral gear,first stage decelerate |
Rated load | 2500kg | Final decelerate type | First stage,planetary gear decelerate |
Max.tractive force | 55KN | Tyre | |
Max.breakout force | ≥58KN | Tyre specification | 16/70-24 |
Max.grade ability | 30° | Front tyre pressure | 350KPa |
Max. dumping height | 3600mm | Front tyre pressure | 350KPa |
Dumping distance | 900mm | Steering system | |
Overall dimension(L*W*H) | 6200*2050*2850mm | Type | Articulated load-sensing hydraulic steering system |
Engine | Steering angle | ±35° | |
Model | Yuchai | Mini turning radius | 4800mm |
Type | Inline,water cooling.dry cylinder,direct injection | system working pressure | 16MPa |
Number of cylinder-bore/stroke | 4 | Boom lifting time | 5s |
Rated power/Rated speed | 85KW / 2200r/min | Total time | 10s |
Transimission system | Brake system | ||
Torque converter | Single-stage | Service brake | Air-on-oil, caliper-disk |
Torque ratio | 3.2 | parking brake | Manual caliper disc |
Transmission type | Planetary power shift | Capacity | |
Gear shift | 4 forwardshift,4 reverseshift | Fuel | 60L |
Max.speed | 36km/h | Hydraulic | 60 |
TL25 loader is our latest development of a medium-sized loader.
–Adopt CUMMINS, YUCHAI engine, powerful and reliable.
–Torque converter and counter-shaft trans mission gearbox, assembled separately, higher reliability and easier maintenance.
–Fully hydraulic steering system, powedr shift transmission, easier operation.
–Bucket can be leveled automatically, optimized working device, higher productivity.
–Comfortable operation environment, new desigh cabin, air-condition at option.
–Various working devices of attachment are available, such as log grapple, pipe fork, grass fork, CZPT bucket, snowblade, pallet fork etc. to meet different need.
Main features
1)6.5ton operating weight,heavy duty!
2) Maximum speed 36km/h,fast!fast!fast!
3) Dumping height:3600mm!
4) Luxury appearance
5) With many attachments,all configuratin customer can choose.
Standard Equipments
—Standard Bucket,
—Hydraulic Torque Converter Transmission,
—Floating Function,
—Mechanical Joystick,
—AC Cabin,
—Rops&Fops Cabin,
—Tipping Cabin,
—Luxury Cabin Inside,
—Backward Imagine,
—Comfortable Seat,
—Adjustable Steering Wheel,
—Wheel Reducer Axle,
—Air Brake,
—Lock for Lifting and Steering Cylinder,
—Hydraulic Pressure Check System,
—Parallel Linkage,
–E4 Lamp,
–Free Service Spare Parts etc
Certifications
All the machine with CE ISO SGS certificate.
Attachments
Titan wheel loader adopts the Hydraulic Quick Hitch. All kinds of accessories can be replaced. Such as: log grapple, grab bucket, pallet fork, road sweeper, ripper, 4 in 1 bucket, snow blade, angle blade, grass fork, hay fork, screening bucket, hydraulic hammer, stick rake,auger and so on.
Our Service
Our trained Professional service team offers high quality in-time service in a very friendly way.
For a good customer experience, the content of pre -sales includes the recommendation on the right products basis on condition. All you have to do is to inform us your needs.
For After-sales, to minimize the downtime, we offer air delivery for the spare parts which are within guarantee within 3 working days.
We have professional technician to support trouble clearing and maintenance.
Pre-Sales Service
(1) Inquiry and consulting support.
(2)Sample testing support.
(3)View our Factory.
After-Sales Service
(1)Training how to instal the machine, training how to use the machine.
(2)Engineers available to service machinery overseas.
Packing & Delivery
We use container transportation,according to your requirements,for you to choose the appropriate collccation If container is too tighber,we will use pefilm for packing or pack it accordfng to customers special requset.
About Us
HangZhou Titan Heavy Machinery Co. Ltd
HangZhou Titan Heavy Machinery Co. Ltd is a professional manufacturer engaged in the research, development, production, sale and service of wheel loader, excavator and forklift.
In addition, we have obtained many kinds of certificates SGS, ISO CE etc. Whether selecting a current product from our catalog orseeking engineering assistance for your application, you can talk to our customer service center about your sourcing requirements.
We sincerely thank all the friend’s support at home andabroad, look forward to establish development business cooperation with you, hand in hand advances boldly, create prosperity.
Our agent is interviewed by local TV station,give you a reason why choose titan.we provide our agents with technical support,service suport,exhibition support,price support,quality support and help them to open the local market and establish long-term cooperation.
FAQ
Q:Why choose Titan?
We sell every machine at a fair price.As our production increases,we are getting much support from the purchase source of raw meterial.
We leave the maximum profit to customer.
1) Titan: an experienced loader manufacturer with over 11 years.
2) Titan team: customers-focused,you’ll get reply within 5 minutes.
3)Titan: premium quality with reasonable price.
4) Titan: CE,BV,SGS,ROPS and FOPS,ISO9001:2008 varified.
The quality control is not an empty word in TITAN.Our products are tested and granted CE cetificate.
Q:What is Titan warranty?
TITAN has a professional sales and after-service team.We are trying our best to make a good service for every customer.
1) Titan after-sales: life-long, meantime offer one year and 1 month warranty.
2) Titan proposal: order some wearing parts with loader for easy maintenance.
Q:What about Titan delivery term?
TITAN Transport packsging team helps our customer to transport their machine in safe and secure way without any damage.
10-20 days after down payment received.
Q:What about the payment term?
30% advance payment,70% balance by T/T.
Analytical Approaches to Estimating Contact Pressures in Spline Couplings
A spline coupling is a type of mechanical connection between 2 rotating shafts. It consists of 2 parts – a coupler and a coupling. Both parts have teeth which engage and transfer loads. However, spline couplings are typically over-dimensioned, which makes them susceptible to fatigue and static behavior. Wear phenomena can also cause the coupling to fail. For this reason, proper spline coupling design is essential for achieving optimum performance.
Modeling a spline coupling
Spline couplings are becoming increasingly popular in the aerospace industry, but they operate in a slightly misaligned state, causing both vibrations and damage to the contact surfaces. To solve this problem, this article offers analytical approaches for estimating the contact pressures in a spline coupling. Specifically, this article compares analytical approaches with pure numerical approaches to demonstrate the benefits of an analytical approach.
To model a spline coupling, first you create the knowledge base for the spline coupling. The knowledge base includes a large number of possible specification values, which are related to each other. If you modify 1 specification, it may lead to a warning for violating another. To make the design valid, you must create a spline coupling model that meets the specified specification values.
After you have modeled the geometry, you must enter the contact pressures of the 2 spline couplings. Then, you need to determine the position of the pitch circle of the spline. In Figure 2, the centre of the male coupling is superposed to that of the female spline. Then, you need to make sure that the alignment meshing distance of the 2 splines is the same.
Once you have the data you need to create a spline coupling model, you can begin by entering the specifications for the interface design. Once you have this data, you need to choose whether to optimize the internal spline or the external spline. You’ll also need to specify the tooth friction coefficient, which is used to determine the stresses in the spline coupling model 20. You should also enter the pilot clearance, which is the clearance between the tip 186 of a tooth 32 on 1 spline and the feature on the mating spline.
After you have entered the desired specifications for the external spline, you can enter the parameters for the internal spline. For example, you can enter the outer diameter limit 154 of the major snap 54 and the minor snap 56 of the internal spline. The values of these parameters are displayed in color-coded boxes on the Spline Inputs and Configuration GUI screen 80. Once the parameters are entered, you’ll be presented with a geometric representation of the spline coupling model 20.
Creating a spline coupling model 20
The spline coupling model 20 is created by a product model software program 10. The software validates the spline coupling model against a knowledge base of configuration-dependent specification constraints and relationships. This report is then input to the ANSYS stress analyzer program. It lists the spline coupling model 20’s geometric configurations and specification values for each feature. The spline coupling model 20 is automatically recreated every time the configuration or performance specifications of the spline coupling model 20 are modified.
The spline coupling model 20 can be configured using the product model software program 10. A user specifies the axial length of the spline stack, which may be zero, or a fixed length. The user also enters a radial mating face 148, if any, and selects a pilot clearance specification value of 14.5 degrees or 30 degrees.
A user can then use the mouse 110 to modify the spline coupling model 20. The spline coupling knowledge base contains a large number of possible specification values and the spline coupling design rule. If the user tries to change a spline coupling model, the model will show a warning about a violation of another specification. In some cases, the modification may invalidate the design.
In the spline coupling model 20, the user enters additional performance requirement specifications. The user chooses the locations where maximum torque is transferred for the internal and external splines 38 and 40. The maximum torque transfer location is determined by the attachment configuration of the hardware to the shafts. Once this is selected, the user can click “Next” to save the model. A preview of the spline coupling model 20 is displayed.
The model 20 is a representation of a spline coupling. The spline specifications are entered in the order and arrangement as specified on the spline coupling model 20 GUI screen. Once the spline coupling specifications are entered, the product model software program 10 will incorporate them into the spline coupling model 20. This is the last step in spline coupling model creation.
Analysing a spline coupling model 20
An analysis of a spline coupling model consists of inputting its configuration and performance specifications. These specifications may be generated from another computer program. The product model software program 10 then uses its internal knowledge base of configuration dependent specification relationships and constraints to create a valid three-dimensional parametric model 20. This model contains information describing the number and types of spline teeth 32, snaps 34, and shoulder 36.
When you are analysing a spline coupling, the software program 10 will include default values for various specifications. The spline coupling model 20 comprises an internal spline 38 and an external spline 40. Each of the splines includes its own set of parameters, such as its depth, width, length, and radii. The external spline 40 will also contain its own set of parameters, such as its orientation.
Upon selecting these parameters, the software program will perform various analyses on the spline coupling model 20. The software program 10 calculates the nominal and maximal tooth bearing stresses and fatigue life of a spline coupling. It will also determine the difference in torsional windup between an internal and an external spline. The output file from the analysis will be a report file containing model configuration and specification data. The output file may also be used by other computer programs for further analysis.
Once these parameters are set, the user enters the design criteria for the spline coupling model 20. In this step, the user specifies the locations of maximum torque transfer for both the external and internal spline 38. The maximum torque transfer location depends on the configuration of the hardware attached to the shafts. The user may enter up to 4 different performance requirement specifications for each spline.
The results of the analysis show that there are 2 phases of spline coupling. The first phase shows a large increase in stress and vibration. The second phase shows a decline in both stress and vibration levels. The third stage shows a constant meshing force between 300N and 320N. This behavior continues for a longer period of time, until the final stage engages with the surface.
Misalignment of a spline coupling
A study aimed to investigate the position of the resultant contact force in a spline coupling engaging teeth under a steady torque and rotating misalignment. The study used numerical methods based on Finite Element Method (FEM) models. It produced numerical results for nominal conditions and parallel offset misalignment. The study considered 2 levels of misalignment – 0.02 mm and 0.08 mm – with different loading levels.
The results showed that the misalignment between the splines and rotors causes a change in the meshing force of the spline-rotor coupling system. Its dynamics is governed by the meshing force of splines. The meshing force of a misaligned spline coupling is related to the rotor-spline coupling system parameters, the transmitting torque, and the dynamic vibration displacement.
Despite the lack of precise measurements, the misalignment of splines is a common problem. This problem is compounded by the fact that splines usually feature backlash. This backlash is the result of the misaligned spline. The authors analyzed several splines, varying pitch diameters, and length/diameter ratios.
A spline coupling is a two-dimensional mechanical system, which has positive backlash. The spline coupling is comprised of a hub and shaft, and has tip-to-root clearances that are larger than the backlash. A form-clearance is sufficient to prevent tip-to-root fillet contact. The torque on the splines is transmitted via friction.
When a spline coupling is misaligned, a torque-biased thrust force is generated. In such a situation, the force can exceed the torque, causing the component to lose its alignment. The two-way transmission of torque and thrust is modeled analytically in the present study. The analytical approach provides solutions that can be integrated into the design process. So, the next time you are faced with a misaligned spline coupling problem, make sure to use an analytical approach!
In this study, the spline coupling is analyzed under nominal conditions without a parallel offset misalignment. The stiffness values obtained are the percentage difference between the nominal pitch diameter and load application diameter. Moreover, the maximum percentage difference in the measured pitch diameter is 1.60% under a torque of 5000 N*m. The other parameter, the pitch angle, is taken into consideration in the calculation.