Product Description
OEM |
GH034030 256907 09267-34 | ||||||
Bearing Size |
34*64*37 ZZ / 2RS / ABS |
||||||
Weight/kg |
0.95 |
||||||
Application |
LAD 2108, 2109, 2110, 2111, 2112, Kalina, Priora , Nexia 1995-2 |
|
|
25 |
52 |
20.6 |
|
DAC2552 |
|
|
25 |
52 |
37 |
||
DAC2552A |
25BWD01 |
25 |
52 |
42 |
|||
DAC2552/576467 |
BT2B445539AA |
|
25 |
52 |
43 |
||
DAC2555 |
BAH5AB |
|
|
29 |
53 |
37 |
|
DAC306AB |
BA2B633313CA |
30BWD07 |
30 |
60.3 |
37 |
||
DAC306/581736 |
434201B/VKBA1307 |
30BWD07 |
30 |
60.3 |
37 |
||
DAC3462/561447 |
BAHB311316B/3 0571 4 |
|
34 |
62 |
37 |
||
DAC3464DE |
605214/VKBA1306 |
34BWD04/BCA70 |
34 |
64 |
37 |
||
DAC3464B/8571 |
BA2B3 0571 6 |
34BWD11 |
34 |
64 |
37 |
||
DAC3466/5804A/479399 |
34BWD10B |
34 |
66 |
37 |
|||
DAC3564A |
BA2B443952/445620B |
|
35 |
65 |
35 |
||
DAC3565A/BAH-5/BAH-C/581571A |
311309/BAH-571 |
|
35 |
66 |
37 |
||
DAC3568C |
633528F/633295B |
35BWD21(4RS) |
35 |
68 |
37 |
||
DAC3568A/549676 |
BAH |
BA2B445535AE |
XGB 4571 |
35 |
72 |
33 |
|
DAC3572 |
456162/44762B |
XGB 4571 |
35 |
72 |
33 |
||
DAC3572571 |
|
BAHB633669/BAH |
VKBA1343 |
35BWD06ACA111 |
35 |
72.02 |
33 |
DAC3572 |
633571CB |
|
37 |
72.02 |
37 |
||
DAC3774C |
35715A |
37BWD01B |
37 |
74 |
45 |
||
DAC387A |
38BWD31CA53 |
38 |
70 |
38 |
|||
DAC3871A |
VKBA3929 |
30BWD22 |
37.99 |
71 |
39 |
||
DAC3872B |
VKBA1377 |
|
38 |
72 |
40 |
||
DAC3873A |
DAD3874368W |
38BWD01ACA121 |
38 |
74 |
36 |
Packaging Details
1.Industrial packaging: Plastic tube (10pcs in 1 tube)+ carton + plywood pallets; plastic bag + kraft paper + carton + plywood pallets;
2.Commercial packing: 1pc/plastic bag+ single color box+ carton + plywood pallets;
3.According to customer’s requirement
Email me now for more information and photos. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | 12 Months |
---|---|
Type: | Wheel Hub Bearing |
Material: | Chrome Steel |
Tolerance: | P0 |
Clearance: | C0 |
ABS: | Without ABS |
Samples: |
US$ 3/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
What are the safety considerations when working with axles, especially during repairs?
Working with axles, especially during repairs, requires careful attention to safety to prevent accidents and injuries. Here are some important safety considerations to keep in mind when working with axles:
1. Personal Protective Equipment (PPE):
Wear appropriate personal protective equipment, including safety goggles, gloves, and steel-toed boots. PPE helps protect against potential hazards such as flying debris, sharp edges, and accidental contact with heavy components.
2. Vehicle Stability:
Ensure that the vehicle is on a stable and level surface before working on the axles. Engage the parking brake and use wheel chocks to prevent unintended vehicle movement. The stability of the vehicle is crucial to maintain a safe working environment.
3. Lifting and Support:
Use proper lifting equipment, such as hydraulic jacks or vehicle lifts, to raise the vehicle safely. Follow the manufacturer’s guidelines for lifting points and weight capacities. Once the vehicle is lifted, support it securely with jack stands or other appropriate supports to prevent it from falling or shifting during repairs.
4. Lockout/Tagout:
If the repair work involves disconnecting or removing any electrical or mechanical components that could cause the axle or wheels to move, follow lockout/tagout procedures. This involves locking and tagging out the power source, so it cannot be accidentally energized while work is being performed.
5. Proper Tools and Equipment:
Use the correct tools and equipment for the job. Using improper tools or makeshift methods can lead to accidents and damage to the axle or surrounding components. Follow the manufacturer’s instructions and recommended procedures for disassembling, repairing, and reassembling the axle.
6. Proper Torque and Tightening:
When reassembling the axle components, use a torque wrench to ensure that fasteners are tightened to the manufacturer’s specifications. Over-tightening or under-tightening can lead to component failure or damage. Follow the recommended torque values provided by the vehicle manufacturer.
7. Safe Handling of Heavy Components:
Axle components can be heavy and cumbersome. Use appropriate lifting techniques and equipment, such as hoists or lifting straps, to safely handle heavy axle parts. Avoid lifting heavy components alone whenever possible and ask for assistance when needed.
8. Proper Disposal of Fluids and Waste:
If the repair involves draining fluids from the axle, such as differential oil, ensure proper disposal according to local regulations. Use appropriate containers to collect and store fluids and dispose of them at authorized collection points.
9. Training and Experience:
Working with axles requires knowledge and experience. If you are unfamiliar with axle repairs, consider seeking assistance from a qualified mechanic or technician who has the necessary training and expertise. If you decide to perform the repairs yourself, ensure that you have the appropriate knowledge and skills to carry out the task safely.
By following these safety considerations, you can help minimize the risk of accidents, injuries, and damage when working with axles, ensuring a safe working environment for yourself and others involved in the repair process.
How do axle ratios impact the performance and fuel efficiency of a vehicle?
The axle ratio of a vehicle plays a crucial role in determining its performance characteristics and fuel efficiency. Here’s a detailed explanation of how axle ratios impact these aspects:
Performance:
The axle ratio refers to the ratio of the number of rotations the driveshaft makes to the number of rotations the axle makes. A lower axle ratio, such as 3.23:1, means the driveshaft rotates 3.23 times for every rotation of the axle, while a higher ratio, like 4.10:1, indicates more driveshaft rotations per axle rotation.
A lower axle ratio, also known as a numerically higher ratio, provides better low-end torque and acceleration. This is because the engine’s power is multiplied as it goes through the gears, resulting in quicker acceleration from a standstill or at lower speeds. Vehicles with lower axle ratios are commonly found in trucks and performance-oriented vehicles where quick acceleration and towing capacity are desired.
On the other hand, a higher axle ratio, or numerically lower ratio, sacrifices some of the low-end torque for higher top-end speed and fuel efficiency. Vehicles with higher axle ratios are typically used in highway driving scenarios where maintaining higher speeds and maximizing fuel efficiency are prioritized.
Fuel Efficiency:
The axle ratio directly affects the engine’s RPM (revolutions per minute) at a given vehicle speed. A lower axle ratio keeps the engine running at higher RPMs, which may result in increased fuel consumption. However, this ratio can provide better towing capabilities and improved off-the-line acceleration.
In contrast, a higher axle ratio allows the engine to operate at lower RPMs during cruising speeds. This can lead to improved fuel efficiency because the engine doesn’t have to work as hard to maintain the desired speed. It’s worth noting that other factors, such as engine efficiency, aerodynamics, and vehicle weight, also influence fuel efficiency.
Manufacturers carefully select the axle ratio based on the vehicle’s intended purpose and desired performance characteristics. Some vehicles may offer multiple axle ratio options to cater to different driving preferences and requirements.
It’s important to consider that changing the axle ratio can have implications on the overall drivetrain system. Modifying the axle ratio can affect the vehicle’s speedometer accuracy, transmission shifting points, and may require recalibration of the engine control unit (ECU) to maintain optimal performance.
As always, for precise information on a specific vehicle’s axle ratio and its impact on performance and fuel efficiency, it is best to consult the vehicle manufacturer’s specifications or consult with automotive experts.
Are there aftermarket axles available for upgrading performance in off-road vehicles?
Yes, there are aftermarket axles available for upgrading performance in off-road vehicles. Off-road enthusiasts often seek aftermarket axle options to enhance the durability, strength, and performance of their vehicles in rugged and demanding terrains. Here’s some information about aftermarket axles for off-road applications:
1. Upgraded Axle Materials:
Aftermarket axles are typically made from high-strength materials such as chromoly steel or forged alloys. These materials offer superior strength and durability compared to stock axles, making them better suited for off-road use where extreme loads, impacts, and torsional forces are encountered.
2. Increased Axle Shaft Diameter:
Some aftermarket axles feature larger diameter shafts compared to stock axles. This increased diameter helps improve the axle’s load-carrying capacity and resistance to bending or torsion. It can also enhance the overall durability and reliability of the axle in off-road conditions.
3. Upgraded Axle Splines:
Axles with upgraded splines are designed to handle higher torque loads. Aftermarket axles may feature larger and stronger splines, providing increased power transfer capabilities and reducing the risk of spline failure, which can occur in extreme off-road situations.
4. Locking Differentials:
Some aftermarket axle options include integrated locking differentials. Locking differentials improve off-road traction by mechanically locking both wheels on an axle together, ensuring that power is distributed evenly to both wheels. This feature can be advantageous in challenging off-road conditions where maximum traction is required.
5. Lifted Vehicle Compatibility:
Aftermarket axles are often designed to accommodate lifted vehicles. Lift kits that raise the suspension height can impact the axle’s operating angles. Aftermarket axles may offer increased articulation or modified geometry to maintain proper alignment and reduce the risk of binding or premature wear.
When considering aftermarket axles for off-road vehicles, it’s essential to choose options that are compatible with your specific vehicle make, model, and suspension setup. Working with reputable manufacturers, consulting with experienced off-road enthusiasts, or seeking advice from professional mechanics can help you select the most suitable aftermarket axle upgrades for your off-road needs.
Lastly, it’s important to keep in mind that upgrading axles alone may not be sufficient for maximizing off-road performance. Other components such as suspension, tires, differential gears, and drivetrain systems should be considered as part of a comprehensive off-road build to ensure optimal performance, reliability, and safety.
editor by CX 2024-04-11
China Custom 28h 32h 36h Holes Boost Bike Hub MTB 6 Pawls Bicycle Disc Brake Like Dt 370 Xm490 12X148 15X110 32h Maza Thru Axle Sealed Bearing axle and wheels
Product Description
28H 32H 36H Holes Boost Bike Hub MTB 6 Pawls
Bicycle Disc Brake Axle Sealed Bearing
OEM Parts: | |
1. Product Color | Only send us your WeChat or WhatsApp No. we can match the colors here exactly. |
2. Product Logo/Sticker | Send us the files in ‘AI’ or ‘PDF’ files. We can work out easily. |
3.Product Package(color box/Carton) | Give us your packing design, we will pack it as your required. |
4. Product Specification | Provide us exact date request,we can revised it professionally. |
Any OEM / ODM order is welcomed . |
Trade terms:
1. Delivery time:
-7-10 days after the payment.(sample order)
-25-35 days after receiving the payment of 30% deposit.(bulk order)
2. Payment:
– T/T
-30% T/T in advance and 70% balance against copy of B/L
3. Packing:
-One set per standard export carton
-According to customer’s request
4. Loading port:
-ZheJiang ,
5. Warranty:
-All our products have 1 year warranty.
Quality Control:
1. All the products will be strictly checked before packaged.
2. All the products will be well packaged before shipping.
3. we will make photos for the ready products for your reference.
4. All our products have 1 year warranty.
Why choose us:
1. A professional manufacturer for bicycle, various kinds of Bicycle Accessories , also welcome OEM.
2. We can provide certificates such as CE,CCC,SGS.
3. We can accept both sample order and mixed bulk orders.
4. High quality, good package, reasonable and competitive price, fast delivery time-reliable supplier.
5. Any Inquiries will be replied within 12 hours.
Condition: | New |
---|---|
Certification: | CE |
Customized: | Customized |
Application: | Kids Bike, Road Bike, Mountain Bike, Ordinary Bicycle |
Material: | Aluminum |
Transport Package: | One Pair in One Box, 50boxes/Carton |
Samples: |
US$ 2/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
An Axle is a Simple Machine For Amplifying Force
An axle is the central shaft that connects the drive wheels of a vehicle. It transmits power from the engine to the wheels and absorbs braking and acceleration forces. It may also contain bearings. Learn more about the important functions of the axle in your vehicle. Its simple design makes it an efficient machine for amplifying force.
An axle is a rod or shaft that connects to the drive wheels
An axle is a rod or shaft that is fixed to the drive wheels of a vehicle. It provides support and rotates with the wheels. Generally, a vehicle has two axles. However, larger vehicles can have more. The type of axle used will depend on how much torque and speed the wheels need to travel.
Drive axles are crucial to the operation of a car. They transfer power from the engine to the wheels, so they must be strong and durable. They also need to be able to support the weight of the vehicle and resist accelerated forces. The drive axle is usually connected to a driveshaft, which extends upward into the transmission and connects with the engine.
There are two main types of axles: front wheel drive (FWD) and rear wheel drive (RWD). The former type is common in passenger vehicles, while the latter type is more common for trucks and cars. The rear wheel drive (RWD) axle connects to the drive wheels, while the front-wheel drive (FWD) axle transfers power from the transaxle differential to the wheels.
Modern drive axles consist of short rods with a flexible rubber boot covering the CV joint. The rubber boot helps to prevent dirt and grease from getting into the CV joint. The increased complexity of the drive axle increases the risk that something goes wrong with it. However, this increases the car’s traction, ride quality, and handling.
A car’s axles are designed by engineers to be extremely strong. They must be able to withstand thousands of pounds of weight, while operating under high levels of friction. But no drive axle is invincible; they will break if the vehicle is overloaded or too heavy.
The rear axle is connected to the engine and rotates with the wheels. The front axle helps with steering and absorbs road shocks. Typically, this part is made of carbon steel and nickel steel.
It absorbs braking and acceleration forces
The Axle is an important part of a vehicle’s suspension. It is responsible for absorbing braking and acceleration forces. Axle roll centres are located on the transversal vertical plane, through the center of each wheel. This is the point at which lateral force applied to the sprung mass is transferred to the unsprung mass, a process known as transfer of momentum. This force coupling point is also known as the Neutral Roll Axis.
An axle’s role in a vehicle goes beyond absorbing braking and acceleration forces. It also serves as a weight transfer device, reducing the stress on the joints of a vehicle. Its design has evolved over time to meet a variety of requirements. It must be durable and able to absorb braking and acceleration forces, while providing the right amount of structural support.
A potential diagram can be used to benchmark tyre performance. The data entered can include suspension geometry and load distributions. The lateral force potential of a tyre is calculated for each individual tyre in an axle, and the values obtained for a constant steer angle are also included.
Optimal energy recovery is crucial for absorbing braking forces and meeting the total braking force required for a given deceleration. Figure 11 shows the braking forces for the front and rear axles over a certain range when j/g = m. The thick solid line ab represents this range.
In addition to braking and acceleration forces, an axle’s lateral force capacity is limited by lateral load transfer. If one axle fails to absorb lateral forces, it might break loose and skid before the other. This can lead to understeer and oversteer. This is why it is not a good idea to put unsprung weight on a vehicle’s axle.
It transmits power from the engine to the wheels
The axle is an integral part of a vehicle’s drive system. It transmits power from the engine to the wheels. Different types of axles have different roles in transmission of power from the engine to the wheels. The drive shaft is the main component of an axle, connecting the engine and the wheels.
A vehicle’s axle transmits power from the engine to the rear wheels. The power is transferred through the gears to move the car forward. The inner wheel of a bicycle pedal powers the back wheel, while the outer wheel moves at a different speed. Similarly, the power from the engine is transmitted to the wheels by a car’s crankshaft and driveshaft.
The type of axle you choose depends on the size of the vehicle and its purpose. Standard axles are suitable for most vehicles, while customized axles are best suited for high-performance vehicles. Customized axles give you more control over the wheel speed and torque. It’s important to know about the types and sizes of axles to choose the right one for your vehicle.
A differential is another vital component of the drivetrain. It allows the power from the engine to reach both wheels, which allows the vehicle to accelerate and decelerate. A differential also compensates for the difference in tyre speeds on curved roads. By using a differential, you can increase the speed of the wheels and improve your car’s handling.
The differential between the front and rear axles is called a bevel ring gear. Its input shaft is supported by a ball race mounted in the axle casing. The other part of the differential is called the input helical gear. The two sun gears are connected by cross-pins.
It is a simple machine for amplifying force
A simple machine is one that increases the output of force without altering the input force. For example, a lever increases force but does not create new energy. Therefore, it is necessary to balance the work input and output. It is important to keep in mind that friction can reduce energy.
Using a simple machine, you can perform various tasks. For example, you can use it to cut and pry apart objects. This type of machine involves a wheel and an axle, which have a smaller radius than the wedge. The force applied by the wheel pushes the two pieces apart.
Another simple machine that amplifies force is a gearbox. The earliest gearboxes were used to lift buckets or weights from wells. The large gear is attached to a smaller one by a hinge. The smaller gear increases the force of the larger one, allowing the small gear to lift much larger loads.
A wheel and axle is a simple machine that uses mechanical advantage to change force. A wheel is a circular disk, and an axle is a rod through the center. The mechanical advantage is a result of the combination of torque and angular momentum to work against the force of gravity. In addition, this machine is closely related to gears.
Simple machines are a great way to compare the magnitude of forces, as they use similar mechanisms. One of the oldest examples of a simple machine is a wheel and axle. A wheel is fixed to an axle, and the axle is fixed to a vertical surface. The force generated by the wheel will be proportional to the distance between the two spools.
Another simple machine that amplifies force is a lever. A lever uses a beam or a rigid rod that can pivot on its fulcrum. It is an effective tool for shifting heavy loads, and also for applying force. It also reduces the friction of a vehicle while preserving its momentum.
editor by CX 2023-05-25
China manufacturer 513121 Wheel Hub Bearing Assembly for Buick Century / Cadillac Deville / Chevrolet Impala, Front and Rear Axle near me manufacturer
Product Description
QUICK OVERVIEW
OE Number | 513121 Wheel Hub Bearing Assembly for Buick Century / Cadillac DeVille / Chevrolet Impala, Front and Rear Axle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fitting Position | Front and Rear alex | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Applicable car Model | Buick Century / Cadillac DeVille / Chevrolet Impala | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Warranty | 1 year / 3
Front and Rear Axle Hub with ABS sensor Flange Diameter: 5.728 In.
Bolt Circle Diameter: 4.527 In. Number of Splines: 33
Application: Buick Century 1997-2000 Model List (Please contact with us for more models)
A wide range of applications: • agriculture and forestry equipment Our Bearing Advantage: 1.ISO Standard 2.Bearing Small order accepted 3.In Stock bearing 4.OEM bearing service 5.Professional:20 years manufacture bearing 6.Customized bearing, Customer’s bearing drawing or samples accepted 7.Competitive price bearing 8.TT Payment or Western Union or PayPal Our Company
FAQ 1.How do you make our business long-term and good relationship?
2.Do you test all your goods before delivery?
3.What products does your company supply? -Industrial Bearings (Deep Groove Ball Bearings, Tapered Roller Bearings and Pillow Block Bearings).
Driveshaft structure and vibrations associated with itThe structure of the drive shaft is critical to its efficiency and reliability. Drive shafts typically contain claw couplings, rag joints and universal joints. Other drive shafts have prismatic or splined joints. Learn about the different types of drive shafts and how they work. If you want to know the vibrations associated with them, read on. But first, let’s define what a driveshaft is. transmission shaftAs the demand on our vehicles continues to increase, so does the demand on our drive systems. Higher CO2 emission standards and stricter emission standards increase the stress on the drive system while improving comfort and shortening the turning radius. These and other negative effects can place significant stress and wear on components, which can lead to driveshaft failure and increase vehicle safety risks. Therefore, the drive shaft must be inspected and replaced regularly. typeDifferent types of drive shafts include helical shafts, gear shafts, worm shafts, planetary shafts and synchronous shafts. Radial protruding pins on the head provide a rotationally secure connection. At least 1 bearing has a groove extending along its circumferential length that allows the pin to pass through the bearing. There can also be 2 flanges on each end of the shaft. Depending on the application, the shaft can be installed in the most convenient location to function. put upThe construction of the drive shaft has many advantages over bare metal. A shaft that is flexible in multiple directions is easier to maintain than a shaft that is rigid in other directions. The shaft body and coupling flange can be made of different materials, and the flange can be made of a different material than the main shaft body. For example, the coupling flange can be made of steel. The main shaft body is preferably flared on at least 1 end, and the at least 1 coupling flange includes a first generally frustoconical projection extending into the flared end of the main shaft body. vibrationThe most common cause of drive shaft vibration is improper installation. There are 5 common types of driveshaft vibration, each related to installation parameters. To prevent this from happening, you should understand what causes these vibrations and how to fix them. The most common types of vibration are listed below. This article describes some common drive shaft vibration solutions. It may also be beneficial to consider the advice of a professional vibration technician for drive shaft vibration control. costThe global driveshaft market is expected to exceed (xxx) million USD by 2028, growing at a compound annual growth rate (CAGR) of XX%. Its soaring growth can be attributed to several factors, including increasing urbanization and R&D investments by leading market players. The report also includes an in-depth analysis of key market trends and their impact on the industry. Additionally, the report provides a comprehensive regional analysis of the Driveshaft Market. China factory Spare Parts For Car CV Joint Drive Shafts For Wholesale Wheel Hub Bearing CV Joint NEW WISH 26-58-25 with Good qualityModel: OTHER Banner Product IdentifyNEW Wish 26-fifty eight-twenty fiveDimensions26x58x25Vehicle FitmentTOYOTAGuarantee1 YearAuto MakeNEW WantHigh quality assurance agreement1 TO 1 TradeManufacturer NameSINGAPORE Items About Us Singapore Manufacture CV Joint Generate Shafts For Wholesale Wheel Hub Bearing CV Joint Accent Getz 25-fifty-22 SingSpareParts Information to Push Shafts and U-JointsIf you’re anxious about the functionality of your car’s driveshaft, you’re not by itself. Numerous car owners are unaware of the warning indicators of a failed driveshaft, but realizing what to search for can help you steer clear of high priced repairs. Right here is a quick guidebook on push shafts, U-joints and servicing intervals. Outlined below are essential factors to contemplate prior to changing a automobile driveshaft. Signs and symptoms of Driveshaft FailureDetermining a faulty driveshaft is simple if you’ve got at any time heard a odd sound from beneath your automobile. These sounds are caused by worn U-joints and bearings supporting the push shaft. When they fall short, the push shafts stop rotating appropriately, creating a clanking or squeaking sound. When this takes place, you may possibly hear sounds from the side of the steering wheel or flooring. Push shaft varietyDriveshafts are employed in a lot of different types of autos. These contain four-wheel travel, front-engine rear-wheel generate, bikes and boats. Each kind of drive shaft has its possess purpose. Under is an overview of the a few most frequent sorts of travel shafts: U-jointIf your car yoke or u-joint exhibits symptoms of put on, it’s time to change them. The easiest way to replace them is to comply with the measures underneath. Use a large flathead screwdriver to examination. If you come to feel any movement, the U-joint is faulty. Also, examine the bearing caps for hurt or rust. If you cannot discover the u-joint wrench, try out checking with a flashlight. upkeep intervalChecking U-joints and slip joints is a critical component of regimen maintenance. Most automobiles are geared up with lube fittings on the driveshaft slip joint, which need to be checked and lubricated at each and every oil adjust. CZPT experts are nicely-versed in axles and can very easily discover a poor U-joint based mostly on the seem of acceleration or shifting. If not fixed appropriately, the drive shaft can tumble off, necessitating expensive repairs. |