Product Description
Product: Drum Braked Axle for off-Road Agricultural Trailer Vehicle In Trailer Parts Wheels Hub Sets
Product Parameters | |||||||||||||||||||||
Reference | square | Studs (qty /Ø) | P.C.D | Bearings | Axle load | Max. Over hang | Brake | Technical data | Brake lever position | ||||||||||||
A | B | 25-30 km/h | 40 km/h | L | L’ | D | E | F | H | I | J | X | |||||||||
mm | mm | mm | 1 axle | 2 axles | 1 axle | 2 axles | mm | mm | mm | mm | mm | mm | mm | mm | |||||||
606XFR | 60 | 6/18 x 1,5 | 160 | 205 | 35718-35711 | 5000 | 4150 | 4500 | 4000 | – | – | 190 | 290 | 300 x 60 C | 335 | 112 | 108 | 200 | 173 | 468 | |
706 XF | 70 | 6/18 x 1,5 | 160 | 205 | 35719-35713 | 6500 | 5400 | 5850 | 4900 | – | – | 230 | 330 | 300 x 60 C | 335 | 115 | 112 | 200 | 180 | 475 | |
4875 | 4550 | 320 x 75 D | 350 | 115 | 123 | 200 | 208 | 578 | |||||||||||||
350 x 80 SE | 390 | 132 | 138 | 200 | 220 | 600 | |||||||||||||||
806 XF | 80 | 6/18 x 1,5 | 160 | 205 | 32211-35715 | 9100 | 7900 | 8200 | 7500 | – | – | 250 | 350 | 300 x 60 C | 335 | 132 | 112 | 200 | 181 | 476 | |
7500 | 6800 | 320 x 75 D | 350 | 132 | 123 | 200 | 209 | 579 | |||||||||||||
350 x 80 SE | 390 | 132 | 138 | 200 | 220 | 600 | |||||||||||||||
808 XF | 80 | 8/18 x 1,5 | 220 | 275 | 32211-35715 | 9100 | 7900 | 8200 | 7500 | – | – | 250 | 350 | 300 x 60 C | 335 | 132 | 112 | 200 | 181 | 476 | |
320 x 75 D | 350 | 132 | 123 | 200 | 209 | 579 | |||||||||||||||
7500 | 6800 | 350 x 80 SE | 390 | 132 | 138 | 200 | 220 | 600 | |||||||||||||
400 x 80 C | 444 | 132 | 125 | 200 | 223 | 731 | |||||||||||||||
906 XF | 90 | 8/18 x 1,5 | 220 | 275 | 32211-32017 | 10000 | 8650 | 9000 | 8200 | – | – | 310 | 410 | 300 x 60 C | 335 | 132 | 112 | 200 | 181 | 476 | |
8200 | 7500 | 320 x 75 D | 350 | 132 | 125 | 200 | 209 | 579 | |||||||||||||
350 x 80 SE | 390 | 132 | 138 | 200 | 220 | 600 | |||||||||||||||
908 XF | 90 | 8/18 x 1,5 | 220 | 275 | 32211-32017 | 10000 | 8650 | 9000 | 8200 | – | – | 310 | 410 | 300 x 60 C | 350 | 132 | 112 | 200 | 181 | 476 | |
320 x 75 D | 350 | 132 | 123 | 200 | 209 | 579 | |||||||||||||||
8200 | 7500 | 350 x 80 SE | 390 | 132 | 138 | 200 | 220 | 600 | |||||||||||||
400 x 80 C | 444 | 132 | 125 | 200 | 223 | 731 | |||||||||||||||
908 XF | 90 | 8/18 x 1,5 | 220 | 275 | 32211-32217 | 11200 | 9750 | 15710 | 9200 | – | – | 290 | 390 | 320x 75 D | 350 | 131 | 124 | 200 | 209 | 579 | |
9200 | 8400 | 400 x 80 C | 444 | 131 | 126 | 200 | 223 | 731 | |||||||||||||
406 x 120 | 458 | 131 | 170 | 203 | 304 | 733 | ################ | ||||||||||||||
910XFR | 90 | 10/22 x 1,5 | 280 | 335 | 32217-32217 | 11200 | 9750 | 15710 | 9200 | – | – | 290 | 390 | 400 x 80 C | 444 | 131 | 126 | 200 | 223 | 731 | |
9200 | 8400 | 406X120 | 458 | 131 | 170 | 203 | 304 | 733 | ################ | ||||||||||||
1008 XF | 100 | 8/18 x 1,5 | 220 | 275 | 32217-32217 | 13400 | 11600 | 12000 | 11000 | – | 10000 | 320 | 320x 75 D | 350 | 131 | 124 | 200 | 209 | 579 | ||
11000 | 420 | 400 x 80 C | 444 | 131 | 126 | 200 | 223 | 731 | |||||||||||||
406 x 120 | 458 | 131 | 170 | 203 | 304 | 733 | ################ | ||||||||||||||
1571 XF | 100 | 8/22 x 1,5 | 280 | 335 | 32217-32217 | 13400 | 11600 | 12000 | 11000 | 11000 | 10000 | 320 | 420 | 400 x 80 C | 444 | 131 | 126 | 200 | 223 | 731 | |
406 x 120 | 458 | 142 | 170 | 203 | 304 | 733 | ################ | ||||||||||||||
1571 XFR | 100 | 8/22 x 1,5 | 280 | 335 | 32219-32219 | 14500 | 12600 | 13000 | 11800 | 11800 | 10800 | 300 | 400 | 400 x 80 C | 444 | 142 | 129 | 200 | 227 | 735 | |
406 x 120 | 458 | 142 | 170 | 203 | 304 | 733 | ################ | ||||||||||||||
1110XF | 110 | 8/22 x 1,5 | 280 | 335 | 32219-32219 | 14500 | 12600 | 13000 | 11800 | 11800 | 10800 | 300 | 400 | 400 x 80 C | 444 | 142 | 129 | 200 | 227 | 735 | |
406 x 120 | 458 | 142 | 170 | 203 | 304 | 733 | ################ | ||||||||||||||
1210XF | 120 | 8/22 x 1,5 | 280 | 335 | 32219-32219 | 15000 | 13000 | 13500 | 13000 | 13000 | 11250 | 490 | 590 | 400 x 80 C | 444 | 142 | 129 | 200 | 227 | 735 | |
406 x 120 | 458 | 142 | 170 | 203 | 304 | 733 | ################ | ||||||||||||||
1510XF | 150 | 8/22 x 1,5 | 280 | 335 | 32219-32219 | 15000 | 13000 | 13500 | 13000 | 13000 | 11250 | 500 | 600 | 400 x 80 C | 444 | 142 | 126 | 200 | 227 | 735 | |
406 x 120 | 458 | 142 | 170 | 203 | 304 | 733 | ################ | ||||||||||||||
1510XF | 150 | 8/22 x 1,5 | 280 | 335 | 2 x HM518445/10 | 15000 | 13000 | 13500 | 13000 | 13000 | 11250 | 500 | 600 | 420×180 | 475 | 190 | 276 | 200 | 385 | 721 | 435,793,875 |
420×220 | 475 | 190 | 316 | 200 | 396 | 825 | ################ |
FAQ:
Q. Are you manufacturer? What is the aim of your company?
A. Yes. CZPT Asia has been producing agricultural and industrial axles and suspensions since the year 2006. Our aim is to
provide only high quality Axles and Suspensions with accesories to global clients but with competitive prices.
Q. Where is your factory?
A. We are located in HangZhou, ZheJiang , China. Welcome to visit us.
Q. How many years have you been in this business line?
A. We have 20 years experience for production of Agricultural and Industrial products, Our products are enjoying good reputation
from more than 20 countries.
Q. What is your brand?
A. ROC is our own brand, CZPT Asia is affiliated to the France CZPT Group (Est. 1971), it is a whole-owned subsidiary
company of France CZPT Group in China.
Q. Can you accept OEM ?
A. Yes, OEM is acceptable, We can sell products without ROC logo.
Q. How do you ensure the quality?
A. We have strict QC process:
1) Before production, Check strictly the raw material quality.
2) During the half production, We check the finished product quality.
3) Before shipment, We test every product and check defects. Any products with defects won’t be loaded.
More details, Please check with our sales team.
Q. What about your M.O.Q ?
A. Our minimum order value is USD500. For smaller order, please check particularly with our sales team.
Q. What is the lead time?
A. Within 40 days for 40ft container. Within 30 days for 20ft container.
Q. What about your payment terms?
A. We accept various terms, including T/T , L/C , Western Union, etc. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Yes |
---|---|
Warranty: | Yes |
Type: | Rear Axles, Axle |
Certification: | ISO/TS16949, ASTM, CE, DIN, ISO |
Loading Weight: | 10T |
ABS: | With ABS |
Samples: |
US$ 60/Set
1 Set(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
What are the key differences between live axles and dead axles in vehicle design?
In vehicle design, live axles and dead axles are two different types of axle configurations with distinct characteristics and functions. Here’s a detailed explanation of the key differences between live axles and dead axles:
Live Axles:
A live axle, also known as a solid axle or beam axle, is a type of axle where the wheels on both ends of the axle are connected and rotate together as a single unit. Here are the key features and characteristics of live axles:
- Connected Wheel Movement: In a live axle configuration, the wheels on both ends of the axle are linked together, meaning that any movement or forces applied to one wheel will directly affect the other wheel. This connection provides equal power distribution and torque to both wheels, making it suitable for off-road and heavy-duty applications where maximum traction is required.
- Simple Design: Live axles have a relatively simple design, consisting of a solid beam that connects the wheels. This simplicity makes them durable and capable of withstanding heavy loads and rough terrains.
- Weight and Cost: Live axles tend to be heavier and bulkier compared to other axle configurations, which can impact the overall weight and fuel efficiency of the vehicle. Additionally, the manufacturing and maintenance costs of live axles can be lower due to their simpler design.
- Suspension: In most cases, live axles are used in conjunction with leaf spring or coil spring suspensions. The axle is typically mounted to the vehicle’s chassis using leaf springs or control arms, allowing the axle to move vertically to absorb bumps and provide a smoother ride.
- Off-road Capability: Live axles are commonly used in off-road vehicles, trucks, and heavy-duty applications due to their robustness, durability, and ability to deliver power to both wheels simultaneously, enhancing traction and off-road performance.
Dead Axles:
A dead axle, also known as a dummy axle or non-driven axle, is a type of axle that does not transmit power to the wheels. It is primarily used to provide support and stability to the vehicle. Here are the key features and characteristics of dead axles:
- Independent Wheel Movement: In a dead axle configuration, each wheel operates independently, meaning that the movement or forces applied to one wheel will not affect the other wheel. Each wheel is responsible for its own power delivery and traction.
- Weight Distribution: Dead axles are often used to distribute the weight of the vehicle more evenly, especially in cases where heavy loads need to be carried. By adding an extra axle without driving capability, the weight can be distributed over a larger area, reducing the load on other axles and improving stability.
- Steering: Dead axles are commonly used as front axles in vehicles with rear-wheel drive configurations. They provide support for the front wheels and allow for steering control. The steering is typically achieved through a separate mechanism, such as a steering linkage or a steering gear.
- Reduced Complexity: Dead axles are simpler in design compared to live axles since they do not have the additional components required for power transmission. This simplicity can lead to lower manufacturing and maintenance costs.
- Efficiency and Maneuverability: Dead axles are often used in vehicles where power delivery to all wheels is not necessary, such as trailers, certain types of buses, and some light-duty vehicles. By eliminating the power transmission components, these vehicles can achieve better fuel efficiency and improved maneuverability.
It’s important to note that the choice between live axles and dead axles depends on the specific application, vehicle type, and desired performance characteristics. Vehicle manufacturers consider factors such as load capacity, traction requirements, off-road capability, cost, and fuel efficiency when determining the appropriate axle configuration for a particular vehicle model.
Are there specific maintenance tips to extend the lifespan of my vehicle’s axles?
Maintaining the axles of your vehicle is crucial for ensuring their longevity, performance, and overall safety. Here are some specific maintenance tips to extend the lifespan of your vehicle’s axles:
- Regular Inspection:
- Lubrication:
- Seal Inspection and Replacement:
- Proper Loading and Towing:
- Driving Techniques:
- Regular Wheel Alignment:
- Proper Tire Inflation:
- Service Intervals:
Perform regular visual inspections of the axles to check for any signs of damage, leaks, or excessive wear. Look for cracks, bends, or rust on the axle housing, and inspect the axle shafts, seals, and boots. Early detection of issues can help prevent further damage and costly repairs.
Follow the manufacturer’s recommendations for axle lubrication. Proper lubrication helps reduce friction and wear on the axle components. Regularly check the axle’s lubricant level and quality, and replace it as necessary. Use the recommended lubricant type and viscosity for your specific axle.
Check the axle seals for any signs of leaks, such as fluid accumulation around the axle ends. Leaking seals can allow contaminants to enter the axle assembly, leading to premature wear and damage. Replace worn or damaged seals promptly to maintain proper lubrication and prevent contamination.
Ensure that you do not exceed the weight capacity of your vehicle’s axles. Overloading or towing beyond the recommended limits can put excessive stress on the axles, leading to premature wear or failure. Be mindful of the payload and towing capacity specified by the vehicle manufacturer.
Adopt proper driving techniques to minimize stress on the axles. Avoid sudden acceleration, aggressive cornering, and harsh braking, as these actions can subject the axles to excessive forces. Additionally, be cautious when driving over rough terrain or obstacles to prevent impacts that could damage the axles.
Maintain proper wheel alignment to prevent excessive strain on the axles. Misaligned wheels can put uneven loads on the axles, leading to accelerated wear. Regularly check and adjust the wheel alignment as per the manufacturer’s recommendations.
Ensure that your vehicle’s tires are properly inflated according to the recommended tire pressure. Underinflated or overinflated tires can affect the load distribution on the axles and increase the risk of axle damage. Regularly check and maintain the correct tire pressure.
Follow the recommended service intervals for your vehicle, which may include axle inspections, lubricant changes, and other maintenance tasks. Adhering to these intervals ensures that the axles are properly maintained and any potential issues are addressed in a timely manner.
It’s important to consult your vehicle’s owner’s manual for specific maintenance guidelines and intervals provided by the manufacturer. Additionally, if you notice any unusual noises, vibrations, or handling issues related to the axles, it is advisable to have your vehicle inspected by a qualified mechanic to identify and address any potential axle problems promptly.
Can you explain the importance of axle alignment for vehicle stability and handling?
Axle alignment plays a crucial role in ensuring vehicle stability and handling characteristics. Proper alignment of the axles is essential for maintaining optimal tire contact with the road surface, minimizing tire wear, maximizing traction, and promoting safe and predictable handling. Here are the key reasons why axle alignment is important:
- Tire Wear and Longevity:
- Optimal Traction:
- Steering Response and Stability:
- Reduced Rolling Resistance:
- Vehicle Safety:
Correct axle alignment helps distribute the vehicle’s weight evenly across all four tires. When the axles are properly aligned, the tires wear evenly, reducing the risk of premature tire wear and extending their lifespan. Misaligned axles can cause uneven tire wear patterns, such as excessive wear on the inner or outer edges of the tires, leading to the need for premature tire replacement.
Proper axle alignment ensures that the tires maintain optimal contact with the road surface. When the axles are aligned correctly, the tires can evenly distribute the driving forces, maximizing traction and grip. This is particularly important during acceleration, braking, and cornering, as proper alignment helps prevent tire slippage and improves overall vehicle stability.
Axle alignment directly affects steering response and stability. When the axles are properly aligned, the vehicle responds predictably to driver inputs, providing precise and accurate steering control. Misaligned axles can lead to steering inconsistencies, such as pulling to one side or requiring constant correction, compromising vehicle stability and handling.
Proper axle alignment helps reduce rolling resistance, which is the force required to move the vehicle forward. When the axles are aligned correctly, the tires roll smoothly and effortlessly, minimizing energy loss due to friction. This can contribute to improved fuel efficiency and reduced operating costs.
Correct axle alignment is crucial for ensuring vehicle safety. Misaligned axles can affect the vehicle’s stability, especially during emergency maneuvers or sudden lane changes. Proper alignment helps maintain the intended handling characteristics of the vehicle, reducing the risk of loss of control and improving overall safety.
To achieve proper axle alignment, several key parameters are considered, including camber, toe, and caster angles. Camber refers to the vertical tilt of the wheel when viewed from the front, toe refers to the angle of the wheels in relation to each other when viewed from above, and caster refers to the angle of the steering axis in relation to vertical when viewed from the side. These alignment angles are adjusted to meet the vehicle manufacturer’s specifications and ensure optimal performance.
It’s important to note that factors such as road conditions, driving habits, and vehicle modifications can affect axle alignment over time. Regular maintenance and periodic alignment checks are recommended to ensure that the axles remain properly aligned, promoting vehicle stability, handling, and safety.
editor by CX 2024-05-08