China Best Sales 1200tpd Oil Refining Technology, Edible Oil Refinery Plant Machine with Best Sales

Product Description

Basic Info

Model No.: 50-1000t/d

Product Description
Our vegetable oil and fat refining line is used to refine various oils, including soybean oil, rapeseed oil, cottonseed oil, peanut oil, sunflower seed oil, maize germ oil, and rice bran oil. This production line features a capacity of 30-1,000 tons of crude oil per day, and is CZPT to eliminate plasticizer (DEHP) pollution and prevent the formation of trans fatty acids (TFA) in an efficient manner. According to different kind of crude oils,we will use different refining process. Chemical refining technology and physical refining technology are 2 kinds of refining process.
Process Workflow
OneRefining Workshop
Degumming and Neutralization → Bleaching→ Dewaxing→ Deodorization 
Two: Phospholipid Workshop
Crude Oil Filtration → Degumming → Phospholipid Concentration and Drying 

Three: Automatic Control System

(1) Degumming and Neutralization
Devices
mixer, reactor, heat exchanger, acid and alkali dosing device, separator, vacuum dryer, vacuum system

Features

For specific kind and grade of crude oil , the degumming and neutralization process can be flexibly adjusted to improve product yield. Physical refining process is suitable for refining of high acid value oil. Efficient system of heat exchanging can reduce the consumption of steam significantly. Devices used in the process are all well sealed, which efficiently prevents air from entering and further avoids oil oxidation.

 

 

(2) Bleaching

Devices
Bleaching earth feeder,Pre-mixer ,Bleaching tank,filter,Bleaching vacuum system

Features
The oil from neutralization section is mixed with bleaching earth for removal of pigments. The bleaching earth is transported in pneumatic mode, thus efficiently alleviate environment pollution caused by dust. The precise feeding system is used to quantify the bleaching earth, which contributes to accurate measurement and easy operation.

Mechanical agitation is carried out in the bleaching tower to ensure complete contact between the bleaching earth and the oil. As a result, stable and reliable performance and great bleaching effect can be achieved. Then, the bleaching earth is filtered out in vertical pressure leaf filters. It`s worth mentioning that there are 2 leaf filters, which work alternatively to improve service life. The bleached oil will go through a security filter for precision filtration. In this way, qualified bleached oil will be obtained.

 

 

(3) Dewaxing

Devices
crystallizer, maturing tank, heat exchanger, cooler, horizontal filter, filter press, conveyor and feeding device for filter aid and auxiliary devices including refrigerant unit, refrigerant circulating system, compressed air system and circulating water system

Features
Oils like sunflower oil or corn germ oil have waxes present in them. At low temperature, these waxes gives hazy appearance to oil, which is not liked by consumers. It is therefore essential to remove these waxes prior to bottling and marketing of oil.

In our dewaxing process, continuous crystallization and crystal growth help to improve dewaxing efficiency significantly, thus reducing energy consumption and production cost. The oil after dewaxing have high quality and can passes national standards and even some strict standards.
 

 

(4) Deodorization

Devices 
deodorization tower, fatty acid collecting system, vacuum system, heat exchanger, cooler, canned motor pump and auxiliary devices including high pressure steam boiler (thermal oil furnace) and circulating water system

Features
Every vegetable oil has its own distinct natural odour. In addition, extra unpleasant odour is imparted to the oil during degumming and bleaching processes. Hence, it is essential to remove the odour from the bleached oil.

In the deodorization section, deodorization tower used is made up with filling plates and column trays to accommodate deodorization of various oils, especially physical refining process. During deodorization, steam jet vacuum pump is sharply cooled by circulating cool water, thus creating a high vacuum status, which helps to carry away odoriferous matter to the barometric condenser and reduces steam consumption and waste water emission. As a result, production environment will be improved and less installation space will be required. Furthermore, based on quality of crude oil, technological parameters of the process can be flexibly adjusted to prevent formation of trans-fatty acids.

 

(5) Crude Oil Filtration
Devices

leaf filter (vertical and horizontal), oil pump, storage tank, compressed air system

Features
The process is designed to remove particulate matter from crude oil prior to refining process. Hence, product yield and quality are greatly improved for sequential processes. It is very convenient and easy to upload the particles since the process features high level of mechanization. There are 2 filters, which work alternatively to extend service life.

(6) Phospholipid Concentration and Drying

Devices

conditioning tank, film evaporator, vacuum system, phospholipid cooling device, phospholipid delivery pump, storage tank

Features
The film evaporator adopted features high precision rotor and shell, large heat transfer coefficient, great evaporation intensity, low evaporation temperature and short staying time of materials. The vacuum system is designed with dividing-wall condensing system, which prevents waste water emission and therefore eliminate environment pollution.

 

(7) Automatic Control System

In the master control room, an efficient, stable and advanced DCS control system is equipped, which consists of operation station, control station and communication network.

Features
The control system is characterized by high reliability, stability, great resistance to disturbance. It is also designed with features of remote monitor and fault diagnosis.

Every stage of the whole production line is dynamically and clearly displayed on the computer screen at the operation station. User-friendly human machine interface contributes to great convenience. Users can start or stop motors and electrical equipment just using the computer. In addition, it is very convenient to print relevant reports when it is required.

Acquisition and control of parameters are all accomplished by the programme written in the control station. In this way, operation station only undertakes things such as operation, parameter display, data record and data storage. As for important parameters, the control system is CZPT to ensure automatic control, data storage and alarm when values of these parameters exceed preset limit values.

PROFIBUS field bus network ensures rapid and reliable communication. Open ODBC and OLE standard interfaces are also equipped in the control system, which facilities communication with the host computer and other control systems.

 

We also provide the following project and equipment:
Oilseed Pretreatment Project
Oilseed Pressing Project
Oil Extraction Project 
Oil Refining Project 
Cottonseed Miscella Refining Project
Low Temperature and Edible Soybean Meal Project
Soy Protein Concentrate Project
Soy Protein Isolate Project
Cottonseed Protein Project
Full Fat Soybean Powder Project
ASME Pressure Vessel 
ASME Heat Exchanger 
Looking for ideal Oil Degumming Neutralization Machine Manufacturer & supplier ? We have a wide selection at great prices to help you get creative. All the Oil Bleaching Deodorizing Machine are quality guaranteed. We are China Origin Factory of Oil Dewaxing System. If you have any question, please feel free to contact us.

How to Choose the Right Worm Shaft

You might be curious to know how to choose the right Worm Shaft. In this article, you will learn about worm modules with the same pitch diameter, Double-thread worm gears, and Self-locking worm drive. Once you have chosen the proper Worm Shaft, you will find it easier to use the equipment in your home. There are many advantages to selecting the right Worm Shaft. Read on to learn more.
worm shaft

Concave shape

The concave shape of a worm’s shaft is an important characteristic for the design of a worm gearing. Worm gearings can be found in a wide range of shapes, and the basic profile parameters are available in professional and firm literature. These parameters are used in geometry calculations, and a selection of the right worm gearing for a particular application can be based on these requirements.
The thread profile of a worm is defined by the tangent to the axis of its main cylinder. The teeth are shaped in a straight line with a slightly concave shape along the sides. It resembles a helical gear, and the profile of the worm itself is straight. This type of gearing is often used when the number of teeth is greater than a certain limit.
The geometry of a worm gear depends on the type and manufacturer. In the earliest days, worms were made similar to simple screw threads, and could be chased on a lathe. During this time, the worm was often made with straight-sided tools to produce threads in the acme plane. Later, grinding techniques improved the thread finish and reduced distortions resulting from hardening.
When a worm gearing has multiple teeth, the pitch angle is a key parameter. A greater pitch angle increases efficiency. If you want to increase the pitch angle without increasing the number of teeth, you can replace a worm pair with a different number of thread starts. The helix angle must increase while the center distance remains constant. A higher pitch angle, however, is almost never used for power transmissions.
The minimum number of gear teeth depends on the angle of pressure at zero gearing correction. The diameter of the worm is d1, and is based on a known module value, mx or mn. Generally, larger values of m are assigned to larger modules. And a smaller number of teeth is called a low pitch angle. In case of a low pitch angle, spiral gearing is used. The pitch angle of the worm gear is smaller than 10 degrees.
worm shaft

Multiple-thread worms

Multi-thread worms can be divided into sets of one, two, or 4 threads. The ratio is determined by the number of threads on each set and the number of teeth on the apparatus. The most common worm thread counts are 1,2,4, and 6. To find out how many threads you have, count the start and end of each thread and divide by two. Using this method, you will get the correct thread count every time.
The tangent plane of a worm’s pitch profile changes as the worm moves lengthwise along the thread. The lead angle is greatest at the throat, and decreases on both sides. The curvature radius r” varies proportionally with the worm’s radius, or pitch angle at the considered point. Hence, the worm leads angle, r, is increased with decreased inclination and decreases with increasing inclination.
Multi-thread worms are characterized by a constant leverage between the gear surface and the worm threads. The ratio of worm-tooth surfaces to the worm’s length varies, which enables the wormgear to be adjusted in the same direction. To optimize the gear contact between the worm and gear, the tangent relationship between the 2 surfaces is optimal.
The efficiency of worm gear drives is largely dependent on the helix angle of the worm. Multiple thread worms can improve the efficiency of the worm gear drive by as much as 25 to 50% compared to single-thread worms. Worm gears are made of bronze, which reduces friction and heat on the worm’s teeth. A specialized machine can cut the worm gears for maximum efficiency.

Double-thread worm gears

In many different applications, worm gears are used to drive a worm wheel. These gears are unique in that the worm cannot be reversed by the power applied to the worm wheel. Because of their self-locking properties, they can be used to prevent reversing motion, although this is not a dependable function. Applications for worm gears include hoisting equipment, elevators, chain blocks, fishing reels, and automotive power steering. Because of their compact size, these gears are often used in applications with limited space.
Worm sets typically exhibit more wear than other types of gears, and this means that they require more limited contact patterns in new parts. Worm wheel teeth are concave, making it difficult to measure tooth thickness with pins, balls, and gear tooth calipers. To measure tooth thickness, however, you can measure backlash, a measurement of the spacing between teeth in a gear. Backlash can vary from 1 worm gear to another, so it is important to check the backlash at several points. If the backlash is different in 2 places, this indicates that the teeth may have different spacing.
Single-thread worm gears provide high speed reduction but lower efficiency. A multi-thread worm gear can provide high efficiency and high speed, but this comes with a trade-off in terms of horsepower. However, there are many other applications for worm gears. In addition to heavy-duty applications, they are often used in light-duty gearboxes for a variety of functions. When used in conjunction with double-thread worms, they allow for a substantial speed reduction in 1 step.
Stainless-steel worm gears can be used in damp environments. The worm gear is not susceptible to rust and is ideal for wet and damp environments. The worm wheel’s smooth surfaces make cleaning them easy. However, they do require lubricants. The most common lubricant for worm gears is mineral oil. This lubricant is designed to protect the worm drive.
worm shaft

Self-locking worm drive

A self-locking worm drive prevents the platform from moving backward when the motor stops. A dynamic self-locking worm drive is also possible but does not include a holding brake. This type of self-locking worm drive is not susceptible to vibrations, but may rattle if released. In addition, it may require an additional brake to keep the platform from moving. A positive brake may be necessary for safety.
A self-locking worm drive does not allow for the interchangeability of the driven and driving gears. This is unlike spur gear trains that allow both to interchange positions. In a self-locking worm drive, the driving gear is always engaged and the driven gear remains stationary. The drive mechanism locks automatically when the worm is operated in the wrong manner. Several sources of information on self-locking worm gears include the Machinery’s Handbook.
A self-locking worm drive is not difficult to build and has a great mechanical advantage. In fact, the output of a self-locking worm drive cannot be backdriven by the input shaft. DIYers can build a self-locking worm drive by modifying threaded rods and off-the-shelf gears. However, it is easier to make a ratchet and pawl mechanism, and is significantly less expensive. However, it is important to understand that you can only drive 1 worm at a time.
Another advantage of a self-locking worm drive is the fact that it is not possible to interchange the input and output shafts. This is a major benefit of using such a mechanism, as you can achieve high gear reduction without increasing the size of the gear box. If you’re thinking about buying a self-locking worm gear for a specific application, consider the following tips to make the right choice.
An enveloping worm gear set is best for applications requiring high accuracy and efficiency, and minimum backlash. Its teeth are shaped differently, and the worm’s threads are modified to increase surface contact. They are more expensive to manufacture than their single-start counterparts, but this type is best for applications where accuracy is crucial. The worm drive is also a great option for heavy trucks because of their large size and high-torque capacity.

China Best Sales 1200tpd Oil Refining Technology, Edible Oil Refinery Plant Machine   with Best SalesChina Best Sales 1200tpd Oil Refining Technology, Edible Oil Refinery Plant Machine   with Best Sales